Numerical study on mixture formation characteristics in a direct-injection hydrogen engine

نویسندگان

  • Sujith Sukumaran
  • Baskar Ganapathysubramanian
چکیده

Numerical modeling of direct hydrogen injection and in-cylinder mixture formation is performed in this paper. Numerical studies on direct-injection hydrogen engines are very limited due mainly to the complexity in modeling the physical phenomena associated with the high-velocity gas jet. The high injection pressure will result in a choked flow and develop an underexpanded jet at the nozzle exit, which consists of oblique and normal shock waves. A robust numerical model and a very fine computational mesh are required to model these phenomena. However, a very fine mesh may not be feasible in the practical engine application. Therefore, in this study a gas jet injection model is implemented into a multidimensional engine simulation code to simulate the hydrogen injection process, starting from the downstream of the nozzle. The fuel jet is modeled on a coarse mesh using an adaptive mesh refinement algorithm in order to accurately capture the gas jet structure. The model is validated using experimental and theoretical results on the penetrations of single and multiple jets. The model is able to successfully predict the gas jet penetration and structure using a coarse mesh with reasonable computer time. The model is further applied to simulate a direct-injection hydrogen engine to study the effects of injection parameters on the in-cylinder mixture characteristics. The effects of the start of fuel injection, orientation of the jets, and the injector location on the mixture quality are determined. Results show that the hydrogen jets impinge on the walls soon after injection due to the high velocity of the gas jet. The mixing of hydrogen and air takes place mainly after wall impingement. The optimal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines

The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...

متن کامل

Numerical and experimental investigation of common rail fuel injection system and evaluating influence of fuel pressure on injection characteristics and pressure fluctuations

The combustion processes, engine performance, fuel consumption, exhaust-gas composition, and combustion noise in the diesel engine are closely linked to appropriate mixture of air-fuel in combustion chamber. The fuel-injection parameters such as injection start point, discharge rate curve, injection time and injection pressure are defined by the quality of the mixture formation. The numerical m...

متن کامل

Numerical Simulation of Combustion with Porous Medium in I.C. Engine

Porous media has interesting features in compared with free flame combustion due to the extended of the lean flammability limits and lower emissions. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These c...

متن کامل

Combined effect of ignition and injection timing along with hydrogen enrichment to natural gas in a direct injection engine on performance and exhaust emission

To improve the engine performance and reduce emissions, factors such as changing ignition and injection timing along with converting of port injection system to direct injection in SI(spark-ignited) engines and hydrogen enrichment to CNG fuel at WOT conditions have a great importance. In this work, which was investigated experimentally (for CNG engine) and theoretically (for combustion Eddy Bre...

متن کامل

Numerical Investigation of Flow Field of D87 Dual Fuel Engine

A newly developed heavy duty diesel engine in dual fuel mode of operation has been studied in detail. The main fuel would be natural gas and diesel oil as pilot injection. The importance and effects of mixture preparation and formation through ports, valves and in cylinder flow field with different swirl ratio and tumble on diesel combustion phenomena is an accepted feature which has been studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015